
Boolean Logic
Prof. James L. Frankel

Harvard University

Version of 6:26 PM 10-Sep-2024
Copyright © 2024, 2023, 2021, 2020, 2019, 2017, 2016 James L. Frankel.  All rights reserved.



Logic Levels

• Logic 0
• Also called GND
• Low
• Off
• False

• Logic 1
• Also called VCC

• High
• On
• True

2



AND Gate

A B R

0 0 0

0 1 0

1 0 0

1 1 1

A

B
R

R = AB

3



Inputs vs. Outputs

• A and B are inputs
• Inputs are identified by letters at the beginning of the alphabet
• H should not be used (confusable with H for High)
• Try not to use I (looks like 1)

• R is the output
• Outputs are identified by letters near the end of the alphabet
• For a single output, Q is often used
• X and Z should not be used (are used for other purposes)
• L should not be used (confusable with L for Low)
• Try not to use O (looks like 0)

• Both inputs and outputs may be named by longer identifiers (e.g. Clk, En)

• Inputs are separated from outputs by a solid vertical line
• If multiple inputs are separated from each other by a solid vertical line and multiple outputs are separated 

from each other by a solid vertical line, then the inputs should be separated from the outputs by a double 
solid vertical line

4



The Schematic Symbol for an AND Gate

A

B
R

5



A B R

0 0 0

0 1 0

1 0 0

1 1 1

The Truth Table for an AND Gate

• Describes the behavior of outputs based on the state of inputs

6



Order in which Inputs are Listed

• In general, in a truth table the inputs are listed in numerical order as 
if:
• The rightmost input is the ones place or column (20 = 1)

• The next left-more input is the twos place (21 = 2)

• The next left-more input is the fours place (22 = 4)

•   etc.

• The leftmost input is the most significant bit

7



Number of Inputs

• The number of inputs to a gate can vary

• The number of inputs to a gate is referred to as fan-in

• Generally primitive gates (like our AND gate) will not have more than 
eight inputs

• Generally the number of inputs available in a non-custom primitive 
gate are:
• 2

• 3

• 4

• 8

8



Number of Outputs

• In general, primitive gates (like our AND gate) will have a single output

9



Boolean Formula for AND

• We can also write a formula for the AND gate we just designed

• The AND operator can be written as a middle dot (to signify multiplication): ·
• R = A · B

• Or, simply with no symbol – also as multiplication
• R = AB

• Or, as a cap: ∧
• R = A ∧ B

• Or, as the uppercase word AND
• R = A AND B

• Or, as an ampersand: &
• R = A & B

10



AND Gate Observations

• If one input of the AND gate, say A, is under our control, but the other 
input, B, is not…
• If we assert A Low, then the output is Low

• If we assert A High, then the output is the same as the input, B

• Thus, we can use the AND gate to enable or disable the propagation of a 
signal

• This behavior is often referred to as masking or applying a mask

11



B

C
R

A

D

AND Gate with Four Inputs

• All inputs must be 1 for the output, R, to be 1

• Otherwise, the output is 0

• This is equivalent to saying that if any input is a 0, the output, R, will be 0

• Otherwise, the output is 1
• This is demonstrating the principle of duality

• R = ABCD
12



A

B
R

OR Gate

A B R

0 0 0

0 1 1

1 0 1

1 1 1

R = A + B

13



Boolean Formula for OR

• We can also write a formula for the OR gate we just designed

• The OR operator can be written as a plus symbol (to signify addition): +
• R = A + B

• Or, as a cup: ∨
• R = A ∨ B

• Or, as the uppercase word OR
• R = A OR B

• Or, as a vertical bar: |
• R = A | B

14



B

C
R

A

D

OR Gate with Four Inputs

• If any input is a 1 for the output, R, will be 1

• Otherwise, the output is 0

• This is equivalent to saying that all inputs must be 0 for the output, R, to be 0

• Otherwise, the output is 1
• This is demonstrating the principle of duality

• R = A + B + C + D

15



A R

NOT Gate or Inverter

A R

0 1

1 0

R = Ā

16



Inverter Observations

• The triangular shape is used to signify a digital (or Boolean) amplifier
• A digital amplifier is a device that re-establishes the original noise margins 

and can drive a large number of inputs

• The bubble (or circle) on the output of the Inverter signifies Boolean 
inversion

17



Boolean Formula for NOT

• We can also write a formula for the Inverter gate we just designed

• The NOT operator can be written as a macron or overbar
• R = Ā

• Or, as a prefix tilde
• R = ~A

• Or, as a prefix hook or not-sign
• R = ¬A

• Or, as a suffix prime symbol (or apostrophe or neutral (i.e., straight) single quote)
• R = A'

• Or, as the uppercase word NOT
• R = NOT A

18



A R

Buffer or Driver

A R

0 0

1 1

R = A

19



Buffer Observations

• The triangular shape is used to signify a digital (or Boolean) amplifier
• A digital amplifier is a device that re-establishes the original noise margins 

and can drive a large number of inputs

20



A

B
R

NAND Gate

A B R

0 0 1

0 1 1

1 0 1

1 1 0

R = 𝐴𝐵

21



NAND Gate Observations

• The bubble (or circle) on the output of the AND gate signifies Boolean 
inversion

• Thus, the NAND gate is equivalent to an AND gate followed by a NOT 
gate

22



A

B
R

NOR Gate

A B R

0 0 1

0 1 0

1 0 0

1 1 0

R = 𝐴 + 𝐵

23



NOR Gate Observations

• The bubble (or circle) on the output of the OR gate signifies Boolean 
inversion

• Thus, the NOR gate is equivalent to an OR gate followed by a NOT 
gate

24



A

B
R

Exclusive-OR or XOR Gate

A B R

0 0 0

0 1 1

1 0 1

1 1 0

R = A ⨁ B

25



Boolean Formula for XOR

• We can also write a formula for the Exclusive-OR gate we just 
designed

• The XOR operator can be written as a circled plus symbol: ⨁
• R = A ⨁ B

• Or, as an underlined cup: ∨
• R = A ∨ B

• Or, as the uppercase word XOR
• R = A XOR B

26



XOR Gate Observations

• If one input of the XOR gate, say A, is under our control, but the other 
input, B, is not…
• If we assert A Low, then the output is the same as the input, B

• If we assert A High, then the output is the inverse of the input, B

• Thus, we can use the XOR gate to selectively invert a signal

27



A

B
R

Equivalence (EQV) or XNOR Gate

A B R

0 0 1

0 1 0

1 0 0

1 1 1

R = 𝐴 ⨁ 𝐵

28



XNOR Gate Observations

• The XNOR gate will output a High signal if its two inputs are the same; 
otherwise the output will be Low

• Hence, it is also referred to as an Equivalence gate

29



XNOR Gate Observations

• The bubble (or circle) on the output of the XOR gate signifies Boolean 
inversion

• Thus, the XNOR gate is equivalent to an XOR gate followed by a NOT 
gate

30



Boolean Formula Reflections

• Why is the plus (addition) symbol used for OR?

• Why is the middle dot (multiplication) symbol used for AND?

31



Derivation of All Gates from a Single Primitive 
Gate Type
• If we wanted to be able to derive all gates from a single primitive 

gate, what are the properties that that single gate would possess?

32



Derivation of All Gates from a Single Primitive 
Gate Type
• If we wanted to be able to derive all gates from a single primitive 

gate, what are the properties that that single gate would possess?
• More than one input

33



Derivation of All Gates from a Single Primitive 
Gate Type
• If we wanted to be able to derive all gates from a single primitive 

gate, what are the properties that that single gate would possess?
• More than one input

• Inversion

34



Derivation of All Gates from a Single Primitive 
Gate Type
• If we wanted to be able to derive all gates from a single primitive 

gate, what are the properties that that single gate would possess?
• More than one input

• Inversion

• Ability to set an input to High or Low

35



Gates that Include Inversion & Multiple Inputs

• NAND

• NOR

• XOR

• XNOR

36



Derivation of AND from NAND

• Can you derive the functionality of an AND gate from a circuit of just 
NAND gates?
• Multiple NAND gates may be utilized

37



Derivation of NOT from NAND

• Can you derive the functionality of a NOT gate from a circuit of just 
NAND gates?
• Multiple NAND gates may be utilized

38



Derivation of AND from NOR

• Can you derive the functionality of the AND gate from a circuit of just 
NOR gates?
• Multiple NOR gates may be utilized

39



Derivation of XOR and XNOR

• Can you derive the functionality of the XOR and XNOR gates from a 
circuit of AND, OR, NAND, NOR, and NOT gates?
• More than one instance of each gate may be utilized

40



Flip Flop

A B R S

0 1 1 0

1 0 0 1

1 1 ~S0 ~R0

0 0 1 1

A

B

R

S

41



Flip Flop Observations

• This structure is called “cross-coupled NAND gates”

• The tilde (~) is used to indicate inversion

• The subscript of 0 signifies the previous state of the signal

• This circuit is unusual in that it uses its outputs as inputs

• Note that the input A and B columns are not in binary numerical order in 
the truth table – we want to analyze the rows (almost) in this order

42



Flip Flop: A==0, B==1

A B R S

0 1 1 0

1 0 0 1

1 1 ~S0 ~R0

0 0 1 1

A

B

R

S

43



Flip Flop: A==1, B==0

A B R S

0 1 1 0

1 0 0 1

1 1 ~S0 ~R0

0 0 1 1

A

B

R

S

44



Flip Flop: A==0, B==0

A B R S

0 1 1 0

1 0 0 1

1 1 ~S0 ~R0

0 0 1 1

A

B

R

S

45



Flip Flop: A==1, B==1 is more complicated

A B R S

0 1 1 0

1 0 0 1

1 1 ~S0 ~R0

0 0 1 1

A

B

R

S

46



Flip Flop: A==1, B==1, with previous R==1, S==0

A B R S

0 1 1 0

1 0 0 1

1 1 1 0

0 0 1 1

A

B

R

S

47



Flip Flop: A==1, B==1, with previous R==0, S==1

A B R S

0 1 1 0

1 0 0 1

1 1 0 1

0 0 1 1

A

B

R

S

48



Flip Flop: A==1, B==1, with previous R==1, S==1

A B R S

0 1 1 0

1 0 0 1

1 1 0 0

0 0 1 1

A

B

R

S

49



Flip Flop: A==1, B==1, with previous R==0, S==0

A B R S

0 1 1 0

1 0 0 1

1 1 1 1

0 0 1 1

A

B

R

S

50



Flip Flop Memory Behavior

• Never set A to 0 and B to 0 at the same time

• If A != B, then outputs are stable and R = !A and S = !B

• If we are in a state where A != B and R != S and then we move to a 
state in which A = B = 1, then
• Whatever the state of R and S were before we set A and B to both be 1, the 

flip flop will remember that state!

• The flip flop will remember that previous state of the inputs in the outputs!

51



D Latch

D Clk R S

X 0 ~S0 = R0 ~R0 = S0

0 1 0 1

1 1 1 0

D

R

S

Clk

52



D Latch Observations

• The X input is a don’t-care symbol

• It means that the state of that input is irrelevant
• It is a way to simplify the truth table

• Otherwise, all states of that input would have to be listed

53



D Latch

D Clk R S

X 0 ~S0 = R0 ~R0 = S0

D 1 D ~D

D

R

S

Clk

54



D Latch Observations

• This version of the truth table uses a symbol “D” as a variable

• This usage both simplifies the table and emphasizes that the state of 
that input is “stored”

55


	Slide 1: Boolean Logic
	Slide 2: Logic Levels
	Slide 3: AND Gate
	Slide 4: Inputs vs. Outputs
	Slide 5: The Schematic Symbol for an AND Gate
	Slide 6: The Truth Table for an AND Gate
	Slide 7: Order in which Inputs are Listed
	Slide 8: Number of Inputs
	Slide 9: Number of Outputs
	Slide 10: Boolean Formula for AND
	Slide 11: AND Gate Observations
	Slide 12: AND Gate with Four Inputs
	Slide 13: OR Gate
	Slide 14: Boolean Formula for OR
	Slide 15: OR Gate with Four Inputs
	Slide 16: NOT Gate or Inverter
	Slide 17: Inverter Observations
	Slide 18: Boolean Formula for NOT
	Slide 19: Buffer or Driver
	Slide 20: Buffer Observations
	Slide 21: NAND Gate
	Slide 22: NAND Gate Observations
	Slide 23: NOR Gate
	Slide 24: NOR Gate Observations
	Slide 25: Exclusive-OR or XOR Gate
	Slide 26: Boolean Formula for XOR
	Slide 27: XOR Gate Observations
	Slide 28: Equivalence (EQV) or XNOR Gate
	Slide 29: XNOR Gate Observations
	Slide 30: XNOR Gate Observations
	Slide 31: Boolean Formula Reflections
	Slide 32: Derivation of All Gates from a Single Primitive Gate Type
	Slide 33: Derivation of All Gates from a Single Primitive Gate Type
	Slide 34: Derivation of All Gates from a Single Primitive Gate Type
	Slide 35: Derivation of All Gates from a Single Primitive Gate Type
	Slide 36: Gates that Include Inversion & Multiple Inputs
	Slide 37: Derivation of AND from NAND
	Slide 38: Derivation of NOT from NAND
	Slide 39: Derivation of AND from NOR
	Slide 40: Derivation of XOR and XNOR
	Slide 41: Flip Flop
	Slide 42: Flip Flop Observations
	Slide 43: Flip Flop: A==0, B==1
	Slide 44: Flip Flop: A==1, B==0
	Slide 45: Flip Flop: A==0, B==0
	Slide 46: Flip Flop: A==1, B==1 is more complicated
	Slide 47: Flip Flop: A==1, B==1, with previous R==1, S==0
	Slide 48: Flip Flop: A==1, B==1, with previous R==0, S==1
	Slide 49: Flip Flop: A==1, B==1, with previous R==1, S==1
	Slide 50: Flip Flop: A==1, B==1, with previous R==0, S==0
	Slide 51: Flip Flop Memory Behavior
	Slide 52: D Latch
	Slide 53: D Latch Observations
	Slide 54: D Latch
	Slide 55: D Latch Observations

